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ABSTRACT

Currently available fitting techniques for both linear and non-

linear models are slow, -require expensive equipment that is not widely

available, and shield the modeler from an in-depth understanding of

the fitting procedure. New high speed microcomputer technology has

opened the door for the development of microcomputer based fitting

techniques that eliminate some of these shortcomings.

This paper begins by discussing fitting in general with an

emphasis on the distinction between the linear fitting problem and the

non-linear fitting problem. The suitability of existing fitting techniques

to handle these fitting problems is analyzed, and the strengths and

weaknesses of each technique are noted. A case is made to justify the

development of a microcomputer based phenomenological fitting

procedure, and the technique is developed.

The various stages in the development of the technique are

described including the arrangement of a user-friendly display, the

choice and testing of the cybernetic interface, and the writing of the

computer code in Turbo Pascal 5.5. The technique is validated by fitting

a number of real world data sets, and two of these validation tests are

discussed in detail.

Finally, speculation is made about the future of the

phenomenological fitting technique. The phenomenological fitting

algorithm developed in the paper is included on disk with a brief

user's manual. -
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INTRODUCTION

It has been the ultimate goal of science since its fledgling years to

find a model of the universe that would enable mankind to predict the

future with absolute certainty. Needless to say, this goal has not yet

been achieved. However, many less general models have been

developed to help predict the behavior of millions of common

phenomena. For example, if a net force F is applied to an object of

mass m in a frictionless environment, Newton's Second Law predicts

that the acceleration a of the object will be a=F/m. The equation a=F/m

is a mathematical model used to describe the behavior of a mass-

net-force system in a frictionless environment. Given any two of the

quantities a, m, or F, the third quantity can be directly calculated.

Alternatively, given that one of the quantities, m, is constant, a plot

may be constructed of a vs. F. The problem, then, is to determine a

particular value for m. It may be seen that mathematical modeling

involves two parts: formulation of a mathematical relationship

between the dependent and independent variables, and determination

of the values of the parameters in the relationship.

If, as a more complex example, an object of mass m is attached to

a spring of spring-constant k, submerged in a viscous fluid, displaced a

distance xo from its equilibrium position, and allowed to oscillate, it is

not obvious what the displacement of the mass from equilibrium will

be at some time t in the future. The goal of a modeler in a situation

like this might be to develop a model that incorporates all possible
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variable quantities and that yields a value for the displacement x for

any valid value of time. Such a model might look something like

x(t) = x0 e-Vr) cos(cot)

where the damping coefficient for the system is r and the frequency of

oscillation for the system is o). Once the model has been developed and

validated, it can be put to use in a number of different ways. The most

obvious way is that given values for x0, r, and w, the model could be

used to predict a displacement for the mass at any given time. In the

real world, however, quantities like the damping coefficient and the

frequency of oscillation are often not directly measurable. Instead,

easily measured quantities like time and displacement must be used to

determine values for those quantities not easily measured. If the

apparatus described above were set up in a laboratory and data points

were taken consisting of matching time and displacement pairs, the

data could be graphed and, presumably, values could be determined for

xo, ,r, and co. Clearly there is no way to uniquely determine values for

each of the unknown quantities in the model because it is not possible

to eliminate the other unknown quantities from the solution.

Substitution into the model of a single set of values for time and

displacement taken in the lab would result in an infinite number of

possible combinations of values for xo, r, and o that satisfy the model.

Additionally, uncertainties in the measurements of time and

displacement taken in the lab introduce uncertainty into the values

that are determined for xo, r, and o [TAY82]. The problem, then, is to
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determine the values for xo, r, and o that best satisfy all of the data

points taken in the laboratory simultaneously. This problem and all

similar problems fall under the general category of curve fitting. The

general term, parameter, is used for the unknown quantities whose

values are being sought.

Goodness of Fit

Before beginning to fit a model to a set of data, it is necessary to

determine under what conditions the fit will be satisfactory. In other

words, goodness of fit criteria must be established. The quantity most

commonly used in determining goodness of fit is chi-square (X2) which

is the sum of the squared deviations for the ith measurement, each

weighted inversely as the square of the uncertainty, q,, in the

measurement

= [ (Yi - Yt(xi))

Defining the number of degrees of freedom, v, for the fit as one less

than the difference between the number of points, NP, and the number

of terms, NT, or parameters in the model, v- NP - NT - 1 , the

2associated measure of the goodness of fit called reduced chi-square (XV)
2is obtained. XV may be defined as the goodness of fit per degree of

freedom

2 - X
2

xv = V
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If X2 is plotted in parameter space for a model with two

parameters (Figure 1), the conditions under which a best-fit would

occur are more easily visualized. The surface defined by X2 plotted

against the parameters in the model is generally referred to as a hyper-

surface because if more than two parameters exist in the model, the

plot is not a true surface and the visualization becomes somewhat

more difficult. The location of a minimum in the X2 hyper-surface

defines the parameter values which yield the best fit.

Figure 1: Chi-Square (x2) Hyper-Surface

The successful determination of the parameter values in a

modelling situation like the one described above depends very heavily

on the choice of the model. For the data taken in the lab from the

damped mass-spring system discussed above, a damped sinusoidal

model was chosen. In a situation where the behavior of the system is

not well understood, a much less appropriate model might be

inadvertently chosen. For example, had a + b x been chosen as the

model instead of the damped sinusoid, values for a and b would still
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have been determined in the same way, but the resulting model would

have been far less successful in predicting the behavior of the system.

All mathematical models fall into one of two categories: linear

or non-linear. Some models are explicitly non-linear, but can be

linearized through algebraic manipulation. These models will be

called linearizable models, and they fall under the category of linear

models for the purpose of fitting them to sets of data.

Linear & Linearizable Models

Models that are truly linear are those in which the parameters

actually appear linearly in the model. The power series defining the

theoretical values, ytxi), as

ytjxi) = a + bXi + c-- + d +-

is a linear model because all of the parameters a, b, c, ... , appear

linearly. The linear model may be expressed generally as:

NT-I

yt(xi) = I an Fn(x,)

A linearizable model is a model in which the parameters do not

explicitly appear linearly, but which has a well defined and directly

calculable inverse. This definition may be expanded for the purposes

of this discussion to include the requirement that the inverse be easily

calculable because if it is not, linearizing the model yields no savings in

time or effort on the part of the modeler. The model
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yt(,) -- a 4 ec

is not explicitly linear in x and y, but, if x and a are assumed positive, it

can be linearized by taking the natural log of both sides to yield

6yt(x,)] = Ina + b txi + cx,

which is linear in x, ba, &nx, and bty [DAN80].

The X2 hyper-surface for a linear or linearized model and any set

of data has a single well defined minimum in it that can be easily

found with a microcomputer or, in many cases, with a programmable

hand-held calculator. The location of the minimum defines a unique

set of best fit parameters for the model and data.

Non-Linear Models

Truly non-linear models are functions that have no directly

calculable inverse. For example,

ytOxi) = a xi + b eC"

is not linear in x and y, and it cannot be linearized because it has no

directly calculable inverse.

A typical X2 hyper-surface for a set of data and a non-linear

model has many relative minima rather than the single absolute

minimum seen with a linear or linearized model. As a result, many

possible combinations of the model parameters will result in a relative

minimum in X2. This greatly complicates the job of the modeler

because it nust then be decided which minimum and corresponding
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set of model parameters is being sought. Even once it is decided which

minimum is being sought, it is no easy matter to find it. A number of

techniques exist to help modelers search parameter space for relative

minima in X2 .

EXISTING FITrING TECHNIQUES

Curve fitting is generally a very computationally intensive task.

Most implementations of curve fitting techniques, therefore, require a

computer or at least a hand-held calculator. There are a number of

different techniques that are used to determine the best fit

parameterization of a mathematical model to a set of data, but most of

them fall under one of two main categories: linear regression and

non-linear regression.

All linear and linearized models may be fit to a set of data using

linear regression techniques. In the case of very simple linear models,

a hand-held calculator can easily determine the parameter values

which best fit a model to a set of data. The model a + b x is a very

frequently used model, and formulae have been developed that yield

values for a and b given a set of data pairs. The fitting is simple because

only one minimum exists in the X2 hyper-surface. As a result, the best

fit values for a and b are unique. For a more complex model like a

fourth or fifth order polynomial, computer programs must be used.

The process for determining the coefficients of such a polynomial being
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fit to a data set is now iterative and computationally intensive, but it

will still yield a unique and easily determined set of best-fit parameters.

An explicitly non-linear but linearizable model must be

linearized before linear regression techniques can be applied to it. The

process of linearizing the model is called Functional Linearization (FL).

Once the model has been linearized, linear regression techniques will

again yield a unique and easily determined best fit parameterization.

Non-linear regression techniques must be applied to models that

are non-linear and cannot easily be linearized through FL.

Grid/Gradient Search (GGS) and parabolic interpolation of relative

minima are two well known techniques of non-linear regression

[BEV691. Less well known are more recently developed techniques like

the Eigen-Valued Approach to Modelling (EVM) and finding the

L2-Norm Solution of the Hessian Matrix (NL2SOL). A detailed

analysis of these techniques is not within the scope of this discussion,

but all of them have a number of things in common that are worth

considering.
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Figure 2: Grid/Gradient Search (GGS)

All of them require the modeler to provide the computer with

initial estimates of the values for the model parameters called seeds.

They then utilize various techniques to search parameter space around

the area of the initial parameter values and attempt to vary the

parameters in such a way that they "fall into" the nearest or deepest

local minimum in the X2 hyper-surface. For example, the GGS

technique (Figure 2) solves for the gradient of the hyper-surface at

various points in parameter space and follows the gradient directions

into local minima. Similarly, the parabolic interpolation method

(Figure 3) works by varying a parameter in a direction of decreasing X2

until an increase in X2 is encountered. It then assumes the shape of the

local minimum may be approximated by a parabola and uses the three

most recent parameter values to define the parabola and solve for its

minimum. The same technique is repeated again for each of the

parameters in the model.
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X 2

a
Figure 3: Parabolic Interpolation

Clearly these techniques are very computationally intensive and

often must be implemented on large main-frame or mini-computers.

Main-frame and mini-computers are usually difficult to find, and

computing time on them is scarce and expensive. Even on fast

machines, complex fits can require hours or even days of costly

computer time. Additionally, since the hyper-surface of a non-linear

model typically includes many relative minima, it is easy to see that

given the wrong initial parameter seeds, these techniques will find the

wrong minima. Since there is usually no way to interact with the

computer while it is fitting, the only remedy for this problem is to

provide it with new seeds and try again. Unless the modeler has a

good idea where the minimum being sought is located and can restrict

the variation of the parameters to within pre-specified limits, the

computer may well waste expensive time searching in parameter space

where the values for one or more parameters are non-physical.

Searching parameter space, for example, in an area where a parameter
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that represents frequency has a negative value is an exercise in futility.

Since there is no way to compare the data set and the model visually

with conventional non-linear regression techniques, it is not easy to

determine the appropriateness of a model being fitted until the fit has

been completed and a graph of the data and the model can be

compared. It is specifically with these shortcomings in mind that

research was conducted into and a program developed to implement

the phenomenological fitting procedure.

PHENOMENOLOGICAL FITING

Phenomenological fitting is interactive curve fitting. It works

on the principle that human logic coupled with a computer's number

crunching ability is often more effective than brute-force computer

techniques at fitting curves to data. More specifically, it relies on the

fact that a curve that appears to fit a set of data usually does fit the data.

A technique that allows real-time human interaction and participation

coupled with a graphical display of the fitting process has the following

inherent advantages over conventional fitting techniques:

1. In general, experience strongly suggests that a curve that appears to
fit a set of data visually, fits the data statistically.

2. Non-physical parameter situations can be recognized and easily
avoided.

3. A feeling is obtained for the sensitivity of the model to variations in
individual parameters.

4. A feeling is obtained for the interaction of two or more parameters.
5. The range of applicability for the model is more easily understood.
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6. The equipment required is relatively inexpensive and widely
available.

8. The technique allows the user to easily obtain parametric seeds for
use in more rigorous fitting procedures.

In its pure form, phenomenological fitting also has the following

disadvantages:

1. The technique is not statistically rigorous.
2. Current technology restricts the technique to fits involving a single

independent variable.

Developing and implementing the phenomenological curve fitting

technique was the primary objective of this research project.

Since one of the objectives of the research was to make

phenomenological fitting available to a wide range of individuals and

to make it inexpensive, it was decided to develop the program on a

microcomputer. Turbo Pascal was used as the programming language

with some assembly language inserted where speed was critical. The

program in its current form is called FlyFitter because the process of

phenomenological fitting reminds one of "flying" a fit.

In order for a human mind to be able to compare a set of data

and a mathematical model quickly and accurately, a plot must be

displayed with the model superimposed on the data. The modeler

must be able to change the model parameters with precision and ease

once it has been decided what parameter modifications are necessary.

Finally, once the parameters have been modified, the old model curve

must be erased and the new one displayed as quickly as possible so that

the fitting can proceed smoothly. These three requirements which can
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be summarized as visual clarity, ease of use, and speed of operation,

were the primary elements considered in developing FlyFitter.

The Display

In developing the optimum on-screen display for FlyFitter, four

visual elements were of primary concern. These four elements were

screen composition, display arrangement, color, and resolution. It was

determined that certain information has to be available to the modeler

during the fitting process if the fitting is to proceed quickly and

smoothly. The necessary information includes: the designations and

values of each of the parameters, the current value of X2, a plot of the

model superimposed on the data, and information about how to vary

each of the parameters.

Several different arrangements of the screen were tried in an

effort to display all of the necessary information in an organized and

easily read fashion. Some of these arrangements are shown

schematically in Figure 4. Screen (d) was selected for use in the

program because it offered the optimal plot-area aspect ratio, and it had

more room than the other screens for displaying parameter

information. It was also found to be the most natural arrangement of

information for scanning the various information blocks during

fitting.
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(a) (b)

D__ __i
(c) (d)

Figure 4: Trial Screen Arrangements

Since computers with color monitors are widely available today,

colors were utilized in FlyFitter to help clarify the display of

information on the screen. Only two colors were used on the fitting

screen because it was found that using more than two colors was often

distracting to the modeler. Light-gray was chosen as the background

color and the color for plotting the data because it isn't harsh or

difficult to look at for extended periods of time. Light-green was used

to display the model and the values of the model parameters and X2

because again it is easy to look at, yet it contrasts well with the light-

gray background.

Clearly, for an application like phenomenological fitting that

relies heavily on the precise visual display of data, high screen
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resolutions are desirable. However, since it takes more time to

compute and draw high-resolution curves, speed had to be considered

in choosing a graphics mode for the fitting screen. Additionally, some

new graphics cards are too new to meet the requirement that they be

widely available. The Color Graphics Adaptor (CGA) is very widely

available, but it does not support high enough resolutions to make

phenomenological fitting practical. The much newer Video Graphics

Array (VGA) is becoming more widely available, but it is not as well

established as the Enhanced Graphics Adaptor (EGA), and it does not

offer significant improvements in resolution over the EGA.

Furthermore, VGA graphics modes are not supported by old.!r cards

like the well established EGA card. The 640 pixel by 350 pixel 16 color

EGA graphics mode was selected for the fitting screen in FlyFitter

because of the EGA card's wide spread availability, the suitability of the

resolutions and colors offered, and the fact that newer graphics cards

are compatible with the 640 x 350 16 color EGA mode [SUT88].

The Cybernetic Interface

By its nature, phenomenological fitting requires that some

means be available for the modeler to easily interact with the

computer. Ideally, the means selected offers the most user-friendly

interface for the task being performed. Some of the means considered

in designing FlyFitter were the keyboard, the biaxial joystick, the

mouse, the trak-ball, the touch tablet, and the touch sensitive screen.
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There are three different ways of varying parameters using these

devices. The first way is to designate which parameter is to be varied

before variation begins then control the rate of variation of the

parameter with the amount of movement of the device being used. If,

for example, a modeler using a biaxial joystick wished to increase a

model parameter a that represents angle of attack, the parameter must

first be assigned to an axis on the joystick (Figure 5). Pushing the

joystick to the right would then result in continuous increase in the

value of a, and pushing the joystick to the left would result in

continuous decrease in the value of a. The rate at which a is increased

or decreased would be proportional to the angle at which the joystick

was deflected. Variation of the parameter would be halted by returning

the joystick to the center or neutral position. This method of variation

allows the modeler to vary more than one parameter at once. For

example, the modeler might assign another model parameter, b,

representing airfoil thickness, to the vertical axis of the joystick. The

number of parameters that can be simultaneously varied is limited

only by the number of input devices that may be read by the computer,

the speed of the computer, and the ability of the modeler. This method

of parameter variation lacks the precision of the other two types, so it

requires good hand-eye coordination to be effective, especially if more

than one parameter is being varied at once.
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-a

-b +b

-d +d
Figure 5: Definition of Joy-Stick Axes

A second way of varying parameters using the devices listed

above is similar to the first. As before, the parameter to be varied must

be designated in advance. However, instead of using the input device

to control the rate of parameter variation, the modeler uses it to

control the amount of parameter variation. If, for example, a mouse

were being used to vary the angle of attack a, some constant of

proportionality would be designated by the modeler to define the

relationship between the amount of mouse movement and the

amount of parameter variation. The modeler could instruct the

computer to vary a by 2 degrees for every inch the mouse is moved.

The angle of attack could then be increased or decreased by precise

amounts by moving the mouse to the right and left respectively.

Another parameter like airfoil thickness b, could be assigned to vertical

movement of the mouse allowing simultaneous variation of multiple
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parameters as with the first method, but with greater precision than

before.

A third way of varying parameters is to designate the amount

that a parameter is to be varied before variation begins, then control

which parameter is varied and for how long using the input device.

Suppose, as in the previous example, that a modeler wishes to vary the

angle of attack, a, in a model. Before beginning variation of a, the

modeler must designate an amount by which a is to change every time

a button is pressed on the input device. The input device must then be

manipulated so that an on-screen pointer designates a from among the

other parameters in the model as the one to be varied. Pressing a

button on the input device then varies the parameter by the specified

amount. Holding the button down results in continuous variation of

the parameter at a rate proportional to the designated variation

amount. This third method of variation is the most precise of the

three methods, but it offers no practical way to vary more than one

parameter at a time.

After considering the merits of each input device and the three

methods of parameter variation, it was decided to write two versions of

FlyFitter with the intent to discard one when it proved significantly

inferior to the other. FlyFitter was originally envisioned using biaxial

joysticks, so one of the versions was written using two biaxial joysticks

that varied parameters using the first method described above. The

second version was written using a mouse because mice are so widely

available, and the third method described above was selected to vary
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the parameters because it offered the most precision. Since a trak-ball

operates under the same principles as a mouse, the mouse version of

the FlyFitter can also be used with a trak-ball.

It was decided that use of a touch sensitive screen or a touch

tablet could only be made effective using the third technique of

parameter variation mentioned above and that their use would not

offer significant advantages over the mouse or trak-ball. A keyboard

version of FlyFitter was discarded early in the project because it was

found to be difficult to use in a real-time fitting situaticn, and it offered

no advantages over the joystick and mouse versions of the program.

The Joystick Version

The joystick version of FlyFitte; ws written first because a pair

of joysticks was readily available and because it had been originally

envisioned that a pair of biaxmal :oyb'iLks would be the optimum

interface for the program. The goal of the joystick approach to

phenomenological fitting is to read the joysticks and update the model

curve frequently enough to avoid screen flicker, and provide

instantaneous feedback to the modeler about the effects of parameter

manipulations. In order to achieve this goal, the following things

must be done in a cycle at least 8-12 times every second:

1. Erase the old parameter values
2. Read all four joystick axis values
3. Scale and quantize the joystick readings
4. Modify the associated parameters by the

appropriate amounts
5. Display the new parameter values
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6. Erase the old model curve
7. Recompute the model curve with the

updated parameters
8. Plot the new model curve
9. Erase the old value for X2

10. Compute a new value for x2

11. Display the new value for X2

Steps 3, 4, 7, and 10 are very computationally intensive tasks. The need

for computational speed required the use of a numeric co-processor in

the computer. Although this requirement conflicts with the objective

of making the program useable on as many machines as possible, it was

realized that the program would never run quickly enough without a

fast numeric co-processor.

The joysticks can be read in several ways, but, since speed was so

critical in the joystick version of FlyFitter, assembly language routines

were written to read them. The first routines written used BIOS

interrupts to read the joysticks [DUN88], but pure assembly language

was found to be quicker [MCA85 & HER89]. The assembly language

routines used to read the joysticks are in Appendix A.

A number of serious problems were encountered with the

joystick version of FlyFitter. One of the most persistent problems was

with reading the joysticks too often. Reading a joystick involves

charging a capacitor on the joystick card, then timing how long it takes

for the voltage across the capacitor to drop to a certain level. The

length of time it takes is proportional to the deflection of the joystick

that is connected to a variable resistor which is connected across the

capacitor. If tht' joystick is read too often, the capacitor will not fully
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discharge between readings and erroneous values will result. It is

possible to increase the speed with which a joystick may be read by

physically modifying the card with new capacitors or by putting

additional resistors across the capacitors [HER89]. However, since the

objective of the project is to make the program useable on standard

equipment, the only solution to the problem was to have the computer

perform the other tasks in the cycle between the joystick readings. This

requirement resulted in a reduction in the speed of the loop and an

overall reduction in the frequency of screen updates.

In order to have a neutral position for the stick when it is

centered and a rate of parameter update that is proportional to stick

deflection, the binary counts from the assembly language timer

described above had to be quantized and scaled into a useable set of

multiplicative factors for modifying the parameters. Furthermore, the

scaling cannot be done by a constant factor, nor can the quantizing be

done in predetermined step sizes because each joystick card returns

completely different count values because of differences in the analog

components used on them. The counts returned from a fully deflected

joystick by the joystick reading routines in Appendix A ranged from

the low hundreds with some cards to the high thousands with others.

Scaling factors and quantizing step sizes had to be computed by the

program and stored. The result of these problems was a very time

consuming joystick handling process. This, combined with the speed

inherently required by the joystick technique, made the program too

slow to be practical except on the fastest of microcomputers.
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Another drawback to the joystick technique was that the

requirement for continuous updates of the screen resulted in a

flickering of the model curve and the parameter values. Although the

goal was 8-12 screen updates per second, only about 4 updates were

possible using an 8 MHz 80286 based microcomputer with an 80287

math co-processor.

While it was originally envisioned that using a joystick would

feel natural to a modeler, several situations arose during testing that

clearly were not well suited for the joystick technique. One of them

occurred when fitting a damped sinusoidal model like the one

described in the introduction to this paper. The parameter CO which

represents frequency of oscillation was assigned to the horizontal axis

of the joystick. The instinctive thing to do in a situation where it is

desired to move the model plot to the right is to move the joystick to

the right. However, moving the joystick to the right increased 0) which

compressed the plot of the model making it appear to move to the left.

In this case and many others, the modeler had to fight the instinctive

reaction in order to achieve the desired results. This went against the

objectives of the design.

Additional problems with the joystick included a lack of

common availability and a lack of precision. Needless to say, the

joystick version of FlyFitter was dropped in favor of the mouse

version.



27

The Mouse Version

The mouse version of the FlyFitter was written to operate using

a very different type of interface than the joystick version. The

modeler specifies an increment value for each of the model parameters

before beginning the fitting process. The mouse controls an on-screen

pointer that is used to select and press graphical "buttons" on the

display. Each of the model parameters are displayed on the screen with

their current values and an associated pair of graphical buttons. There

are two buttons, one labeled "+", and one labeled "-". These buttons

are selected with the mouse pointer and used to increment and

decrement the parameter respectively. It was found after some

experimentation that this approach offers several distinct advantages

over the joystick approach.

Since parameters can only be varied one at a time using the

mouse approach, the computational load of the computer is cut by

almost a factor of four over the joystick approach. Furthermore, the

computer need not update the values nor the display of the values of

any of the parameters that are not being modified. Since parameter

modification takes place only when a mouse button has been pressed

rather than continuously as with the joysticks, the computer can sit

idle between parameter modifications. The advantage is that the

screen is not updated unless a parameter is modified so screen flicker is

eliminated except during continuous parameter modification. Since

screen flicker is less of a consideration than before, the program can

run effectively with as few as 2-3 screen updates per second.
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Since the mouse method does not rely on a measured

movement to compute the magnitude of parameter change, there is no

requirement to scale or quantize readings from the mouse. The mouse

is also serviced to by a dedicated, fast, software mouse driver allowing

any dealings with the mouse to be conducted very quickly through

BIOS interrupts from within Turbo Pascal [WE189].

The result of these differences is a new, less demanding cycle of

tasks for the computer to perform for each parameter modification.

The new cycle is shown below:

1. Wait for a mouse button to be pressed
2. Erase the value of the modified

parameter
3. Modify the parameter by the appropriate

amount
4. Display the new parameter value
5. Erase the old model curve
6. Recompute the model curve with the

updated parameter
7. Plot the new model curve
8. Erase the old value for X2

9. Compute a new value for X2

10. Display the new value for X2

Under the same conditions, this loop operates more than twice as

quickly as the loop in the joystick version of the program. However,

the computationally intensive tasks in steps 6 and 9 still necessitated

the use of a numeric co-processor.
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Coding FlyFitter

Once the attributes of the display had been decided on and the

cybernetic interface had been chosen and developed, the bulk of the

computer code that performs the real work had to be written. When

writing any sort of computer code where speed and memory are

significant considerations, a balance has to be found between the

modularization of the code and the efficiency of the code.

Highly modular code is generally easy to read and modify or

update. This makes it convenient for debugging or improving.

However, modular code is also generally less efficient than in-line code

because it relies on the concept of reusable code. Reusable code is code

that is called upon by several different parts of the program to perform

tasks. The term procedure is used in Pascal for a reusable code

segment. The problem is that calling procedures involves jumping

from place to place in the code resulting in a fragmented and slow

execution path for the code. Additionally, since procedures must be

used effectively by several parts of the program, each of which puts

slightly different demands on it, the procedure must be generalized for

several similar tasks rather than specialized for a specific task.

Specialized code is always quicker than generalized code.

In-line code is quicker than modular code because it is placed in

the code where it is needed rather than called upon from somewhere

else in the program. This results in a continuous and efficient path of

execution. Since it is not used by other parts of the program, in-line

code can be highly specialized which usually results in high execution
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speed. The drawback to using in-line code is that if similar tasks are to

be performed at several points within a program, the in-line code must

be written in at every place it is needed. This uses more memory than

modular code. In-line code is also usually more difficult to read and

modify later than modular code.

FlyFitter was written using a balance of in-line and modularized

code. Most of the tasks performed by the program do not require speed,

so these parts of the program were written using many procedures and

procedure calls. Only the main fitting loop of the program that is

executed every time a parameter is modified used primarily in-line

code.

Turbo Pascal offers a feature called the Turbo Pascal Unit (TPU)

to help make programs more modular and readable. Each TPU

contains procedures and functions that are related to one another

allowing the programmer to organize procedures and functions by the

type of task they were written to perform. FlyFitter was written using

twelve TPU's that are all linked to each other and to the main program

called MFlyFit. The relationship between the various units is shown

in Figure 6. All of the TPU's written in italics are built into Turbo

Pascal, and the others were written specifically as part of FlyFitter. The

TPU's Fonts, Drivers, and GetBGI, which incorporate many of Turbo

Pascal's graphics functions into FlyFitter, are modified versions of

units included in the Turbo Pascal Users Manual. The TPU's Parser,

which is an equation parser, and FLib, which contains many of the

built in functions available to the equation parser, are rewritten
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versions of units originally authored by various faculty members at the

United States Naval Academy.

MFlyFitj

GetInput C~rnsFrm Utils Parser
CRT CRT CRT Error
DOS DOS DOS FLib
Error Error Rib RealType
Graph Graph Graph Utils
Utils Reala~r e  Printer

Utils RealType

Mice TScreen Error

CRT CRT CRT
DOS Error Utils
Error Graph
Graph

FLib GetBGI RealType
RealType CRT none

Error
Graph

Fonts DriversGoth A7T"tt 
CGA

lat EGAVGASrip Herc
PC3270

Figure 6: Turbo Pascal Unit (TPU) Organizational Chart
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The bulk of the program is contained in MFlyFit which contains

the code for the main fitting loop and the code for the input screens

that accept information about the model and parameters from the

modeler. MFlyFit relies on Mice, which contains mouse handling

BIOS interrupt routines, to read the mouse, and it relies on Ctrnsfrm to

do coordinate transformations between the real world coordinates of

the data points and the screen coordinates used by the computer.

GetInput contains routines that control the input of information by the

modeler through the keyboard and screen the information for invalid

input. It also includes routines to display files on disk and retrieve

them. Finally, Error and Utils contain procedures and functions that

perform a myriad of tasks required by all of the other TPU's.

CASE STUDIES

Once a preliminary version of FlyFitter had been completed, the

next step in the project was to make it available to professors and

midshipmen to use in their research or class work. The aim was to

have individuals who were not directly connected with the project test

the program using actual data taken in the laboratory and provide

comments about its effectiveness. The general response was very

positive, but most individuals who used the program had suggestions

for improvements. Comments and suggestions resulting from the

original distribution of the program gave rise to the following

modifications in FlyFitter:
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1. The maximum number of data points in a data file was increased
from 300 to 600.

2. The maximum length of a model function was increased from 80
characters to 240 characters.

3. Spherical Bessel functions were added to the function library.
4. The dimensions of the graphics window on the fitting screen were

increased by about 10%.
5. Some of the input screen commands were changed to make

commands standard throughout the program.
6. The layouts of the input screens were changed to make them more

readable.

Once these modifications had been made, FlyFitter was in its final form

for the purposes of this project. The final task was to use the

phenomenological fitting procedure in some real-world situations.

Detailed accounts of two of the instances in which it was effectively

used are given ' , w.

Desifg. of a Heat Exchanger

Midshipman Rich Wells and Midshipman Doug Reckamp were

assigned a design project in which they were to design a compact heat

exchanger for use as an intercooler in an LM2500 gas turbine. The gas

turbine was to operate with a fixed airflow rate and fixed temperatures

and pressures on each side. The coolant to be used was sea water.

Midshipmen Wells and Reckamp were given that the frontal

dimensions of the heat exchanger must be between 0.5 and 2 meters,

that the air-side pressure loss must be less than 2% of the inlet

pressure, and that the temperature differential was not to exceed 70 *IR

A schematic diagram of the heat exchanger is shown in Figure 7.
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Water Flow

z-

Flow
Figure 7: Heat Exchanger

In designing the heat exchanger, two instances were encountered

where FlyFitter proved useful. The first stemmed from the fact that

the convective heat coefficient for air is dependent on the Stanton

Number (St). Since only the Reynolds Number (Re) and the Prandtl

Number (Pr) were known, a means was needed to determine the

Stanton Number given the Reynolds Number and the Prandtl
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Number. A graph of St Pr /3 vs. Re was found in a textbook and the

values were taken from the graph and made into a data file. The

model chosen to fit the data was

yt(xi) = a + bx -1 + c x-2 + d<73

a linear model. Figure 8 shows the results of fitting the model using

FlyFitter vl.0 which is included on disk with a brief users manual in

Appendix B.

The second time phenomenological fitting proved useful was in

determining the pressure drop across the heat exchanger. Again no

direct relationship between Reynolds Number and pressure drop was

available, but a graph of friction factor (f) vs. Re was found in a

textbook and the values were taken from the graph and made into a

data file. This time, the model selected was

yt(x) = a + b x1 + c X 2

again a linear model. Figure 9 shows the results of the

phenomenological fitting.

Once the values of the parameters had been determined using

FlyFitter, the models were used as relationships in TK-Solver which

determined the optimal design for the compact heat exchanger.



36

(Stanton#) (Prandtl#) 2/ vs. Reynolds Number

Re (X lO3)

• ** FlyFitter vl.O

Model Function: f(x) = a+b/x+c/(x^2)+d/(x^3)

or f(x)=a+bxl +cx 2 + d x-3

X^2: 0.000000048 C tis is 2

Parameters:

a = 0.00367
b = 0.00357
c = -0.00042
d = 0.000111

Figure 8: First Fit for Heat Exchanger
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Friction Factor vs. Reynolds Number

f

Re (X10 -3 )

*******************FlyFitter vi.0 *******************

Model Function: f(x) = a+b/x+c/(xA2)

or f(x)=a+bx' +cx-2

X2: 0.0000004226 4= thisis X

Parameters:

a = 0.00936
b = 0.01334
c = 0.00091

Figure 9: Second Fit for Heat Exchanger
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Non-Linear Scattering of Focused, Crossed,
Sound Beams by Turbulence in Water

Associate Professor Murray Korman of the Naval Academy's

Physics Department provided data that had been taken in his acoustics

laboratory. The data had been taken as part of a Trident Project

conducted by Steve Rife during the academic year 1987-88. The

apparatus used in the research is shown in Figure 10. Two transmitters

operating at slightly different frequencies, emitted sound into the

turbulent flow caused by a jet of water flowing in a direction

perpendicular to the line between a receiver and the transmitters. The

receiver then measured the non-linear scattering intensity of the

sound on the opposite side of the flow at various distances from the

center of the water jet.

Nozzle

Discharge

Tansmitter Il Transmitter I
= 2.5 NO 2 = -5N '

Figure 10: Apparatus for the Analysis of Non-Linear Scattering of
Focused, Crossed, Sound Beams by Turbulence in Water
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The data were collected in pairs of non-linear scattering intensity

vs. radius, and the elements of the data pairs were converted into

dimensionless ratios before fitting began. The non-linear model

selected by Professor Korman was

Figures 11 and 12 show the results of two fits of the model to different

sets of data.
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Non-linear Scattering Intensity vs. Scaled Radius

/\

/ \
/ \

gN

=T\V I(rj=O)

/

Radius/30d , where d - 0.25 in

******************* FlyFitter vl.O *******************

Model Function: f(x) = (b+c*x+d*x^2+f*x^3)*exp(-a*x^2)

or f(x)=(b+cx+dx2+fx3) e(-ax2)

X^2: 0.000225245 c ti is X2

Parameters:

a = 51.266842
b = 0.980012
c 0.56140477
d = -9.5811328
f = -42.153919

Figure 11: First Fit for Non-Linear Scattering
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Non-linear Scattering Intensity vs. Scaled Radius

/
l/
/\

/

Radius/30d, where d = 0.25 in

***************FlyFitter vl.O**********

Model Function: f(x) = (b+c*x+d*x^2+f*x^3)*exp(-a*x^2)

or f(x)=(b+cx+dx2+fx3)e(-ax2)

X^2: 0.0001385925 4 ti is

Parameters:

a = 53.646342
b = 1.007312
c = 0.68350477
d = -7.5654328
f = -54.396719

Figure 12: Second Fit for Non-Linear Scattering
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PHENOMENOLOGICAL FITTING TODAY AND TOMORROW

Phenomenological fitting is still in its infancy as a serious fitting

tool, but the potential it offers will make it part of fitting in the future.

Already it brings the power to fit complex non-linear models to anyone

with access to a properly equipped microcomputer. Fcr those with

access to faster computers and rigorous fitting algorithms,

phenomenological fitting is a means by which parameter seeds may

easily be determined and used to save time and money on main-frame

and mini-computers.

As an educational tool, phenomenological fitting can help the

modeler to better understand the sensitivity of the model to variations

in model parameters. Though it was designed to tackle complex non-

linear model fits, phenomenological fitting techniques can just as

easily handle the simple linear fits encountered by high school and

undergraduate college students while enabling them to understand the

fitting process more completely than with conventional fitting

algorithms.

In the future, phenomenological fitting will enjoy the benefits of

faster computer hardware and higher resolution graphics. An increase

in speed will make fitting more complex models practical and

increased display resolutions will mean greater precision can be

achieved using visual fitting techniques. One of the most serious

restrictions of phenomenological fitting is that it is restricted by its

nature to fits involving only one independent variable. As

holographic technology advances, however, it may become possible to
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display true three dimensional graphics, making fits involving two

independent variables possible.
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APPENDIX A

The following three assembly language subroutines calibrate and
read joystick deflections. The AH register must contain a mask value
(01 - X-axis of joystick A, 02 - Y-axis of joystick A, 04 - X-axis of joystick
B, 08 - Y-axis of joystick B) before READAXIS is called. The routine
CALIBRATE is called only when it is desired to recalibrate the joysticks.

MOV AH,AXIS_MASK
READAXIS MOV DX,0201

MOV CX,0400
LI: IN AL,DX

TEST AH,AL
LOOPNZ LI
MOV CX,0000
CLI
OUT DXAL
iMP 12
NOP
NOP

L2- IN ALDX
TEST AH,AL
LOOPNZ 12
STI
NEG CX
RET

CALIBRATE MOV AH,01
CALL READAXIS
SHL CX,1
MOV AXSCALECX
RET

GETVALUE MOV AH,01
CALL READAXIS
XOR DXDX
MOV AXCX
SHL AX,1
SHL AX,1
SHL AX,1
SHL AX,1
SHL AX,1
MOV CX,AXSCALE
IDIV CX
RET
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APPENDIX B

Instructions for Using FlyFitter vl.0

A copy of FlyFitter v.0 has been included as an executable file
on disk for use in any scientific or educational applications required by
the reader. Below are complete instructions designed to help the
reader use the program effectively.

System Requirements

512K RAM
1 floppy or fixed disk drive
16 color EGA graphics card with color EGA screen
Logitech compatible mouse
8087, 80287, or 80387 math co-processor

Loading & Running

The program may be run from the distribution disk. The disk is
bootable and will load MS-DOS and the Logitech mouse driver then
automatically load and run the program. To do this, put the
distribution disk in drive A: and turn on the machine. If all is well, the
title screen will appear. If the title screen fails to appear and an error
message is displayed in the upper left-hand quarter of the screen, check
the computer hardware; the program will report an error if the
computer lacks the necessary hardware or is improperly set-up.

Most mice should be compatible with the program so long as
they have an appropriate software driver. However, the program was
developed for the Logitech mouse and works best with this type of
mouse. If a mouse other than a Logitech mouse is used, MS-DOS and
the appropriate mouse driver must be loaded separately before
beginning the program. The program can then be run from the disk by
inserting the disk in to drive A, typing MFLYFIT at the A> prompt and
pressing RETURN.

If the program is to be run from a fixed disk, create a directory on
the disk and copy MFLYFIT.EXE from the distribution disk to the
directory. Several example data files and fit parameter files have been
included on the disk as examples to aid in the learning process. These
example files may be included in the fixed disk directory by copying the
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files with .DAT and .FPM extensions to the directory. The program
may then be run by typing MFLYFIT at the C> prompt from within the
directory that contains the program.

To optimize the program's performance, do not use memory
resident software with it, and use the fastest computer available. For
complex fits, an 80386 running at 25 MHz may be necessary to achieve
satisfactory results. Even for simple fits, it is recommended that an
80286 running at 8 MHz or higher be used.

Considerations When Using FlyFitter

The program must be provided with the following information before
it can be used:

1) A set of data in text file format
2) A mathematical model with no more that 16 parameters that is to

be fit te the data
3) Single letter designations for each of the parameters in the

mathematical model
4) Initial values for each of the parameters
5) An initial rate of change for each of the parameters that will

determine how quickly each parameter is varied during fitting
6) If a printed report is required, be certain that an appropriate printer

is on-line

The following things should be considered when choosing these
options:

1) The program frequently computes a value for X2, so the fewer the
data points in the data file, the faster the program will run. In its
current form, the program will handle up to 600 data points in a
data file. If a file with more than 600 data points is used by the
program, all points beyond number 600 will be ignored.

2) The plot resolution should be kept as low as possible, again to speed
up the program. This option may be chosen on the Main Input
Screen (MIS). When this value is chosen, it should be kept in mind
that higher resolutions may be necessary to avoid confusing aliasing
for mathematical models that oscillate.

3) Make certain that every parameter that appears in the mathematical
model also uniquely appears on the Parameter Update Screen
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(PUS). For example, if z is to be used as a parameter, make certain
that it appears uniquely on the PUS. All lowercase letters except x
and e are legal parameter designations. e is reserved for the
constant 2.71... and x must be the independent variable in the
mathematical model.

4) The program allows up to six parameters to be designated "active"
at any given time. Only active parameters may be varied at fit time.
If it is desired to vary an inactive parameter, it must be made active
first by placing a "Y" in the active column of the PUS.

Creating a Data File

FlyFitter must be provided with a data file in order to function.
The data file should be a text type file with proper delimiters between
each entry (usually a [tab]). The format should be x y x y x y x .... A
carriage return may be placed after each data pair, but it is net necessary
to do so. An example of a valid file is below:

23.45 [tab here] 342.43 [carriage return here]
34.553 [tab here] 534.32 [carriage return here]
45.901 [tab here] 693.33 [optional carriage return here]

Do not put extraneous characters or unnecessary carriage returns
in the file. Most word processors and many spreadsheets are capable of
creating this type of fie automatically. When using a word processor,
save the file as an ASCII file or a text file. If further guidance is
required, please look at the files with a .DAT extension included on the
distribution disk; these are all valid files.

Using FlyFitter

After the program has loaded and run, the title screen should be
displayed. Press RETURN to get past the title screen, and the Main
Input Screen should appear. From here, the blanks on the screen may
be filled out, or one of the options displayed at the bottom of the screen
may be exercised. To move between fields on any input screen, use the
UP-ARROW and DOWN-ARROW keys (be sure the NUM-LOCK key
is off). To move within a field, use the LEFT-ARROW and RIGHT-
ARROW keys. The HOME key moves the cursor to the beginning of a
field and the END key moves the cursor to the end of a field. The
BACKSPACE key erases the character to the left of the cursor and
moves the cursor left one space. The DELETE key erases a character to
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the right of the cursor. The INSERT key toggles between insert mode
and type-over mode. Pressing ALT-B will clear the current field. Only
legal characters may be entered into the fields, so if the program ignores
a key-press, it is probably because an attempt was made to enter an
illegal character.

The fields on the MIS include the type of plotting symbol to be
used for the data, the mathematical model, and the resolution to be
used for the plot generated by the mathematical model.

When entering the mathematical model, be aware that a wide
variety of functions are available. Below is a list of the functions that
are supported in addition to the usual array of functions, and their
correct entry format (a, x, and y imply real numbers, n and m imply
integers):

angle(x,y) arccos(x)
arcsin(x) arcsec(x)
cosh(x) cot(x)
sinh(x) tanh(x)
coth(x) csc(x)
csch(x) factorial(n)
inf(x,y) intpower(x,n)
invcosh(x) incsinh(x)
invtanh(x) invcoth(x)
invsech(x) invcsch(x)
loga(a,x) power(xa)
ratpower(x,n,m) sec(x)
sech(x) sup(xy)
tan(x) heav(x)
loglO(x) explO(x)
sround(x) strunc(x)
sgn(x) sbj(n,x)

The program will not let the cursor leave the equation field
until a valid mathematical model has been entered. The default model
is x. The letter x must be used as the independent variable in the
model.

All options at the bottom of each screen are selected by pressing
and holding the ALT key while simultaneously pressing the character
of the desired option.
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Before the Fit option ALT-F may be selected, a data file must first
have been loaded using the ALT-D option. Then, the computer must
be provided with the mathematical model and r, n,-ssary
information about its parameters. The model must T rI,-.ed on the
MIS, and all of the parameter information must be entered on the PUS
which can be accessed by selecting the ALT-U option. To return to the
MIS from the PUS, select the ALT-P option which will 1imost always
cause the computer to return to the previous screciL from wherever it
is. Once the information about the model has been entered once, it
need not be done again. All the information may be stored in a file by
selecting the ALT-S option and later recalled using the ALT-R option.
A filename must be provided when the ALT-S option is selected. An
extension of .FPM is automatically appended to any filename provided,
so it is not necessary to include a filename extension.

The ALT-R and ALT-D options first ask for a proper path and
series of wildcards which describe the set of files from which the user
wishes to select. Wildcards and paths are explained thoroughly in the
MS-DOS manual. If it is unclear how to designate a proper path and set
of wildcards, just accept the default path and wildcards whenever this
screen is presented. After selecting a path, the computer will display all
of the files that meet the specified path and wildcard restrictions. The
arrow keys may be used to move among these, and the RETURN or
ENTER key selects and loads the currently highlighted file. If there are
more files than may fit on the screen, then use the PAGE-UP and
PAGE-DOWN keys to display the other files. The HOME and END keys
move the highlight block to the first and last entries on a screen
respectively.

The ALT-G option prints a simple report on the printer. The
first page includes the mathematical model, the most recent value for

X2 , and the fit parameters. To include data in the report, simply
respond by pressing Y to the inquiry. The data will be printed out on
the second and subsequent pages in a tabular format.

Finally, the ALT-F option begins the fitting process. If the
operator has loaded a valid data file and has properly completed the
MIS and PUS, selecting this option should result in a graph on the
upper right of the screen that includes the data plotted with the
designated symbol, and a green curve that represents the mathematical
model computed with the current parameters. Each of the active
parameters and their values along with X2 and its value should be
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displayed on the far left. At the bottom should be each of the active
parameters with a + and - button on either side. The mouse cursor is
active and ready to use. To vary a parameter, simply move the mouse
cursor to the appropriate button and press the mouse button. Holding
down the left mouse button will result in repeated variation of the
parameter. The parameter will be varied by the incremental value
designated on the PUS. Pressing the middle and right buttons will
result in varying the parameter by 3 and 10 times this increment
respectively. To increment the parameter, use the + button to the right
of the parameter and to decrement the parameter, use the - button to

the left of the parameter. The X2 value and the green curve will be
updated appropriately every time you vary a parameter. The best
technique for obtaining a fit is to vary parameters until the green curve
matches the grey data points visually. Then, fine adjustments may be

made by attempting to minimize the value for X2 which is displayed on
the lower left of the screen. Very high precision is possible by
continually decreasing the incremental values for the parameters. A
small amount of practice will result in operator skill in parameter
adjustment. A detailed understanding of the mathematical behavior
of the model is also helpful but not required.

At the bottom right corner of the screen, there is a button labeled
8 and a button labeled 24. These buttons will produce graphics dumps
of the plot area of the screen on Epson compatible 8 or 24 pin printers.
To avoid "hanging" the computer, be certain that a compatible printer
is properly connected and set up before selecting one of these options.

The REDRAW button exists because clutter will inevitably
appear on the screen due to unavoidable rounding errors. If the clutter
becomes distracting, simply select the REDRAW button and the clutter
should disappear. To return to the MIS, select the EXIT button.

Several example data and parameter files have been included on
the disk to help the reader learn to use. Each of the examples includes
two files; one with a .DAT extension, and one with a .FPM extension.
The files can be loaded from within FlyFitter and used to practice curve
fitting.
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Disk (FlyFitter vl.O, rev.2) located in pocket of

original manuscript (see Nimitz Library, Special

Collections).

MFLYFIT


